Keywords for Journal of the European Ceramic Society

Authors should select a maximum of five keywords. Each keyword should be accompanied by the capital letter denoting the category from which the keyword has been selected. If authors wish they may nominate one keyword which is not included in the list below. The list of up to five keywords should appear on the title page of each paper submitted for consideration following the abstract.

A. Processing	C. Properties	MgO
		Mullite
Calcination	Chemical properties	Niobates
Drying	Colour	Nitrides
Extrusion	Corrosion	Oxide superconductors
Films	Creep	Perovskites
Finishing	Dielectric properties	PLZT
Firing	Diffusion	PZT
Grain growth	Electrical properties	Porcelain
Hot isostatic pressing	Electrical conductivity	RBAO
Hot pressing	Fatigue	Si_3N_4
Implantation	Ferroelectric properties	Sialon
Injection moulding	Fracture	SiC
Joining	Hardness	Silicate
Microwave processing	Impedance	Silicides
Milling	Ionic conductivity	SiO ₂
Mixing	Lifetime	Spinels
Powders: solid state reaction	Magnetic properties	Tantalates
Powders: gas phase reaction	Mechanical properties	TiO ₂
Powders: chemical preparation	Optical properties	Traditional ceramics
Precursors: organic	Piezoelectric properties	Transition metal oxides
Pressing	Plasticity	UO,
Shaping	Strength	Y_2O_3
Sintering	Superconductivity	ZnO
Slip casting	Thermal conductivity	ZrO_2
Sol-gel processes	Thermal expansion	
Suspensions	Thermal properties	
Tape casting	Thermal shock resistance	E. Applications
Tupe vasama	Toughness and toughening	
B. Structure and Microstructure	Wear resistance	Actuators
b. Structure and Interestructure	·	Armour
Composites		Batteries
Defects	D. Compositions	Biomedical applications
Electron microscopy		Capacitors
Failure analysis	Al_2O_3	Cutting tools
Fibres	Al ₂ TiO ₅	Engine components
Grain size	Alkali oxides	Fuel cells
Grain boundaries	Alkaline earth oxides	Functional applications
Impurities	Apatite	Hard magnets
Inclusions	β -Al ₂ O ₃	Insulators
Interfaces	$BaTiO_3$ and titanates	Lamp envelopes
Interfaces	Da i 103 and manates	Lamp chivotopes

BeO

Borides

Carbon

CeO₂

Clays

Dimox

Carbides

Microstructure-final Microstructure-prefiring

Non-destructive evaluation

Nanocomposites

Platelets Porosity

Surfaces

Whiskers

Spectroscopy

X-ray methods

Optical microscopy

Ferrites Substrates
Glass Thermistors
Glass ceramics Varistors
Halides Wear parts

Membranes

PTC devices

Refractories

Soft magnets

Sensors

Nuclear applications

Structural applications